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SECTION I

INTRODUCTION

During the development of a method for unsteady linearized
subsonic flows the question arose, how the vorticity within the
wake is distributed during the first stage of the wake formation.
This problem is treated here for both compressible and
incompressible flows.

The incompressible flow has been explored without the
restriction to the initial stage by Herbert Wagner (Reference 1).
The present study uses Wagner's concepts. With the restriction to
the initial stage one obtains rather specific results.

The nature of the problem changes if one takes compressibil-
ity into account. In incompressible flow the velocity of sound is
infinite; the flow field adjusts itself immediately to changing
boundary conditions and a changing vortex distribution, even if the
changes occur within short times. 1In compressible flows perturba-
tions travel during a finite time only over a finite distance. 1In
the beginning stage the wake formation has an effect on only a
small part of the flow field in the vicinity of the trailing edge,
but within this part the unsteady effects cannot be neglected.

Nevertheless, the basic results are the same in the two cases.

In both cases one obtains, conceptually, the actual flow
tield by the superposition of two types of solutions of the partial
differential equation. One of these solutions satisfies the upwash
conditions at the wing, but does not allow for wake vortices. The
scaoond solution is obtained by a superposition of flow fields each
with zero upwash at the wing, they are generated by one vortex shed
from the leading edge at a certain time and traveling from then on
downstream with the flow velocity. In an incompressible unsteady
“low the potential is, of course, time dependent, but the time
deuanidence does not appear in the potential equation (given by the
Laplace equation). Here these flow fields can be represented by

sxplizit formulae. In the compressible case, the potential

~quation can be brought into similarity form, so that instead of




3& three independent variables (two space variables and time) one
':$ deals only with two independent variables. But the resulting

3
. partial differential equation is rather complicated. Fortunately,
uy only a very limited amount of information is needed to find the
jj vortex distribution within the wake. A general discussion is

Q sufficient; only one constant (dependent upon the Mach number)
g remains undetermined. In the incompressible case these data are
- expressed in explicit formulae. The availability of such formulace
j& allows one to give specific information about the resulting flow
if: field. This facet is derived in an Appendix B.
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SECTION II

INCOMPRESSIBLE FLOWS, BASIC CONCEPTS

Considered is a two-dimensional nonsteady incompressible
flow. Let x and y be a system of Cartesian coordinates in which
the x-axis has the free stream direction, and let t be the time. A
thin profile is subject to small time dependent motions or
deformations in a flow with the velocity U. The wake vortices move
with the local velocity. The perturbation of the original parallel
flow due to the wing are considered as small. The vortices,
therefore, move with the free stream velocity U. The airfoil is
replaced by a slit extending along part of the x-axis. An upwash
will be imposed along this slit that depends upon x; with respect
to time it is given by a step function. With results for such an
upwash, it is then possible to generate the response to an upwash
which has the same x dependence and arbitrary time dependence.
Without loss of generality, one can assume that the step occurs at
time zero.

The perturbation potential depends on x,y, and t. But the
potential equation
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{nes not contain the time explicity. We do not allow the airfoil
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thickness to change with time. The upwash is, therefore, the same

J
L'. ﬁ‘.' &

on the upper and lower sides of the airfoil. It follows, that the

;N

IR

Hpwash ¢y is symmetric with respect to the x-axis. The potential,

T
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its derivatives with respect to x and t, and the pressure are then

[ 4
P

antisymmetric, There will be, of course, a jump of the potential

’

R

between the upper and lower sides of the wing and of the wake. At

Rt

the wnake the pressure is continuous, and therefore, because of its

o0

.

antisymmetry, zero.

Beanuse of the assumption of small perturbations, the

P

SR

porturbation pressure is given by




Since at the wake the pressure is zero, it follows that the
potential at the upper side of the wake has the form

o(t, x, 07) = £t - (x - x, )/U) (2)

where Xe p is the x coordinate of the trailing edge. (0+ means
that one approaches y = 0 from above.) For the lower side one has

the same expression with the opposite sign.

The perturbation field is decomposed into two parts. A
steady part is given by the circulation-free flow determined by the
upwash condition (after the step has occurred) at the wing. In
such a flow one finds adjacent to the trailing edge an infinite

pressure at points of the wing and an infinite upwash at points of
the wake. Superimposed to this steady flow is one caused by the
time dependent vortex distribution within the wake (as it exists at
the current time). At the wing zero upwash is prescribed. Outside
the wake and the wing this flow field satisfies the Laplace
equation. This second field gives singularities at the trailing
edge of the same kind as the steady field. The potential at the
upper side of the wake must have the form of Eq. (2). The function
f must be chosen so that the trailing edge singularities cancel

those of the circulation-free flow.

The potential of the circulation-free flow can be developed
Wwith respect to the distance from the trailing edge. Let the
origin of the x,y-system lie at the trailing edge and let

zZ = X + iy

Then the lowest order terms of the development of the perturbation

r potential are given by




L, S 1
o
- with
" 1/2 3/2
- Q = a1/2 z + a1z + 33/2 z AN
if Since for this flow the boundary conditions are independent of
,j time, the coefficients "a" are independent of time. No constant
: term occurs because at the location of the wake there is no
o potential jump in the circulation-free flow. Then
v 4, = Im(de/dz)
¢y = Re(dQ/dz)
-i Specifically within the wake, i.e.,for z = x > 0
.
L
e oy = O
[ -1/2 172
g - 2
5 ¢y (1/2)a, ,5 x vag o+ (3/_A)a3/2 X
. and at the upper side of the wing z = x < 0 (2 = -|x}|)
= -1/2 1/2
- ¢, = (1/2)a1/2|x| + (3/2)a3/2|x|
>
<3
v ¢ = a, + 2a. x + ...
) y 1 2
7
'i “penifia examples can be readily obtained, for instance, from the
,; Yormilae derived in Appendix E of Reference 2.
L3
3 - D
i_ Notine that the term in ¢X and ¢y with the factor |x| 172
:f oars wWwith the same coefficient. The terms in ¢y at the wing do
; net contain fractional powers. (They are determined by the
. houndiry conditions for the upwash.) The wake development is
sol~ly determined by the coefficient ay /e
Formulae for a single vortex in the wake in the presence of a
Pirnite wing are deriv~d in Appendix A, These are the formulin on
wnich the work of Wagner is based. In the present discussion where
vie restriot ournelves from the outset to small times and econ-
5
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sequently to small distances from the trailing edge one obtains
simplified formulae, because then the wing chord is very large in
comparison to the distances under consideration. Therefore, we
assume for the evaluation of the wake potential that the wing
extends along the x-axis from -=» to zero. The formulae so obtained
could alternatively be obtained by developing the complete
expression of the appendix under the assumption that the distance
from the trailing edge are small. To obtain the potential for a
single vortex in the presence of such an infinite slit we first

consider in an Xy Y, plane (Figure 1)

z, - A
¢(z1) = Im log ;T—:_é a > 0 real
with
zy = X, ¢+ iy,

This is the flow field with two vortices of opposite sign at the
points X, = 2 and X, = -a. The velocity component normal to the
y]—axis is zero. The y1—axis is mapped into a slit from -« to zero

along the x-axis by setting

5 - Z1/,’—’
-
A 51/3 (> 0 real |
i
fhen one obtains
/2 1/2
T YA - F . V/2
b - Im log Zprs-—->—= < Im[log(z - £) - 2 logl(z + 51/2)] (3)
Z < + {, «“
-, o . . . .
:? i oexpression has one logarithmie singularity at z = £.  Other
rt; stnealarities cccur at the trailing edge because of the power 21/‘.
~'f' SRt i ns
-.. Y . RSl

f)




- L i L AA- e o ad- At gac asd Bas Bolbdied v Ll e * e

¥y (IMAGINARY Z, AXIS)

- o Xy (REAL Zy AXIS)
X1=-0 X|==a

y (IMAGINARY Z AXIS)

oy WING

O

X (REAL Z AXIS)

Figure 1. Conformal mapping of the right half of the X0 Y, plane
oo with logarithmic singularities at Xy = a and X; - a into
4 an x,y plane with cut along the negative x-axis and a

= logarithmiec singularity at x = £ = 21/2.
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¢ =m -2 Im log(g

Moreover,

¢

Then for z = x > 0 (wake

1/2

y

)

by

+
for z = x + i0 < 0 (wing)

for z = x > §

for 0 < z = x + i0 < §
. 1/2 .
i]x| ) for z = x + i0 < O

1/2
-1/2 ¢ "<
Im(z pon g)

1/2
-1/2 5____
Re(z P g)

These expressions have the same singularities at the trailing edge

43 the circulation-free flow.
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SECTLION 111
THE FORM OF THE WAKE POTENTIAL IN INCOMPRESSIBLE FLOW
We express the potential due to the wake by a linear

combination of expressions (3). Let f(g£) be some function of the
umbral variable (. This potential is then given by

IUt 172 £1/2

o o, . (t,x,y) = | £(g)Im log de
?ﬁ wake 0 Z1/2 R E1/2
< (u)

.“ Ut Ut

= I f(g)Im log (z - £)dE - 2 ! f(g)Im log(z”2 + €1/2)d£
o 0 0

o
:ﬁ- In the 1limits of integration we have taken into account that the

\‘

Sy wake extends from 0 to Ut. The second term in the last equation is
fﬁt analytic. The relation between the function f and the jump of the
ﬂf potential at a point X, between the upper and lower side of the

ifi wake can be determined in the following manner. The circulation
t** integral 4’grad ¢-d§ for a single vortex Im log(z - E£) is 2.

o Consider now a path which starts and ends at the same point Xo of
f;j the wake and which encloses the wake downstream from the point xo
ﬁf' (the wake ends at a finite distance namely x = Ut). (See Figure
e 2.) The second term on the right in Eq. (U4) is regular at and in
T the region within this path and therefore gives no contribution.
ﬁg One obtains
o
AN Ut
Y + _

A 4’grad o (t,x,y).ds = ¢(t,xo,0 )—¢(t,xo,0 ) = 2w Ix f(g)dg

PR (o}

-'::I
;{Z But ¢ is antisymmetric. Hence,

e
R JUt

.,‘.t ¢(t1xoro ) = T X f‘(g)dg
e [o)
:."-.

"l 1 30 +
f(Xo) = -5 H(t,xo.o ) (5)
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Figure 2. Wing and wake at time t. Path of integration for the
¢ determination of the potential difference between the
é upper and the lower sides of the wake at a point xo.
‘ The path starts and ends at x,. One proceeds around the
P vortices enclosed between { = Xs and £ = Ut in the
! counterclockwise sense.
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The form of the potential within the wake has been found in Eq.
(2). The derivative 3¢/3x has, of course, the same form. The
function f(g) therefore has the form g(t - (£/U)), and one obtains

J»Ut: 172 _ 172
(t,x,y) = : g(t - (E/U))Im log2 1/2 - €1/2 dg (6)

wake

The singularity in ¢y which arises in this expression at
points of the wake adjacent to the trailing edge must cancel the
corresponding singularity in the circulation-free flow around the
wing. This is the condition which determines the form of the

function g. We form

3¢ Ut 1/2
wake _ _ -1/2 g
3y - g g(t (E/U))Re 2z T dg
For z = x > 0 one obtains
3¢ Ut 1/2
wake _ 1 _

In order for this expression to cancel the corresponding
singularity in the circulation-free flow one must have

lim
x»0 0

JUt 1/2
gt - £

= const

where the right-hand side does not depend upon the time. Let

£ = q Ut
x = x Ut
Then one obtains
‘ 1/2
flm U1/2J (172 g(t(1 - g 4q
x+0 0 X - q
11
e e B N S I I A T P O T N




iid and one postulates

1
. 1/2

ilm I t1/28(t(1 - q))31— dq = const

x+0 O X - q

a

Kool
LSS D
A,

A
T s

This gives the requirement that t1/2 g(t(1 - q)) be solely a

[

function of q.

s g(t(1 - q)) = F(q)t™ 172

. The argument of g is t(1 - q). It follows that f(q) has the form

const(1 - q)—1/2. Therefore,

g(t(1 - q)) = 120 - q)'”2 const

i or, after one returns to the original coordinate with a different
Ej choice of the constant,
o

-1/2

~ g = const(Ut - §) (7)

‘--
o Thus,
Y

JUt 1/2 172 _ (172

- 2
(Ut - ) Im logz1/2 - 51/2 dg (8)

)
o
,m\. ¢wake(t,x,y) = const !

>
o Eq. (8) is the crucial result for the incompressible flow.
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SECTION IV
THE WAKE IN LINEARIZED COMPRESSIBLE FLOW

As in the incompressible flow, one suddenly imposes at time
zero the boundary condition of constant upwash at the wing. If the
wing extended along the entire x-axis, one would obtain a compres-

sion wave and an expansion wave respectively on the upper and lower

sides which at a (positive) time t generate fields of positive and
negative perturbation pressure and constant upwash out to a
distance a t. (See Figure 3.) |

Perturbations float downstream with the free stream velocity l
U and expand with the velocity of sound a. If the plate ends at
x = 0, the above flow field will terminate at a circle around the
point x = Ut with radius a t. We consider times which are
sufficiently small, so that perturbations coming from the leading |
edge do not affect the region in the vicinity of the trailing |
edge. (See Figure 4.) |

Assume first that no vortices are shed from the trailing
edge. Within the circle described above one then obtains a flow
field cAused by the pressure difference between the upper and lower
side. This flow field will have similarity form with respect to
time, that is the velocities will depend only upon x/t and y/t. At
the portion of the plate within the circle one will have the
desired upwash. At the portion 1, 2, 3 of the circle (which moves
with time) the solution within the circle must match the solution
for the intinite plate, at the remaining portion of the circle it
must matech the undisturbed flow. One expects that at points of the
£-axis downstream of the trailing edge and adjacent to it this flow
has a singularity in the upwash of the same character as in an

incompressible flow., This will be discussed in some detail.

Superimposed to this field is another one due to the vortices
shed from the trajling edge. A single vortex which leaves the
trailing edge at time t moves downstream with the velocity U. It
Zzenerates a field which also has similarity character; it depends
snlaly upon x/(t - t) and y/(t - t). The intensity of the vortices
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Figure 3. Perturbation generated in a parallel flow with
velocity U by an infinite plate (double line)

suddenly set in motion in the y-direction with
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a constant velocity. One obtains a constant
upwash for |y| < at and no upwash at |y| > at.

At y = at and y = ~at one has, respectively,
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Figure 4. Perturbation generated in a parallel flow with velocity
U by a half-infinite plate (double line) suddenly set in
motion in the y-direction with constant velocity. Along
the negative x-axis outside of the circle one had the

same field as for the infinite plate; within the circle

there is a complicated transition field.
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shed in this manner will depend upon t. The function which gives
the intensity must be determined in such a manner that the

singularity generated in the circulation-free flow is cancelled at
all times by the flow field generated by the vortices shed form the
trailing edge. 1In the following we shall develop these ideas in
detail.

After a linearization for the vicinity of a parallel flow the
perturbation potential in the two-dimensional case satisfies the

equation.

2 2
(a” = U )¢xx + a ¢yy - 2U¢xt = ¢y =0 (9)

The potential of a vortex moving downstream with the velocity U (in
other words, with zero velocity with respect to the surrounding

fluid) is given by

o = ImQ

Q = log(x + iy - Ut) (10)

The real part in Eq. (10) would give a moving source. This
expression should satisfy Eq. (9). Let

zZ = X + iy

One has, indeed,

-2
uxx = ~-(z ut)
-2
9] = (z - Ut
vy ( )
-2
th = U(z Ut)
9] = -U2(z - Ut)2

tt

it is readily seen that Eq. (9) is satisfied.

...............................................
....................................
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Similarity solutions are obtained by introducing independent
variables

E =x/t , n=y/t , 1=t (11)

and

¢(XvY’t) = TQW(E:”,T) (12

If ¢ actually depends upon the third variable 1, this is merely a
coordinate transformation. A similarity solution arises if the
function ¢ is independent of 1. To describe the circulation-free
flow, we must set o = 1. It gives for fixed £ and n velocities
which are independent of time (t or 1). This is in accordance with
the boundary condition of constant upwash. In the velocity field
due to a single vortex moving with the velocity U one must set a =

0 for then the circulation around this vortex (the jump of ¢) is

constant if one travels around the vortex along some path returning
to the same point.

One obtains from Eq. (12)

bhx T T Vg
a-2
byy =T Vi

©
1

a-2
t 1 {(a—1)wg - gw&n + TwET}

o, = 1  {ala-1)y + 2(a=1)(-€y, - ny ) + 201y,

2 2 2
+ g wgg + 2Enwgn + Ny - 25,ngT ~ 2mwnT + T Y}

nn T

Then one obtains from Eq. (9) for a = 0

BT I I N 2 _ 2, . _
veg U 2tV - g7) + y (2 n) o+ g (2Un - 2gn)
(13)
P (U - 26) b (=2m) v T (22U ¢ 26) ¢ Ty (2n) - 1T = O
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Nﬂt Futhermore, for a = 1 and y independent of 1

J 2 _ 42, _ .2 2 _ 2
ﬁ Veela u 2eU - g7) + ¥  (a n)

+ Wgn(ZUn - 2gn) =0

(14)

The last two equations have the same principal parts (coefficients
of the highest derivatives).

The behavior of particle solutions at the trailing edge can
be studied by a development with respect to £ and n. As mentioned
above, ¢ is antisymmetric. The form of the lowest terms is
obtained by setting £ = 0 and n

0 in the coefficients of Eqgs.

(13) and (14). Suppressing the time dependence in ¢ one obtains
2 2 2

wgg(a u=) + wnna =0 for a = 1 (15)
2 2 2

wgg(a Uu-) + wnna + 2UwE = 0 for a = 0 (16)

The term UwE in the second equation already gives a contribution of

higher order in y. In essence one deals with the Laplace equation.

Setting

NN
L, h

) 1. .l.l.
AN

co= (e i -2 L M- ua

sne obtains for the lowest order terms in the development in Eq.
(15)

172
Y = a1/2 Img + a11mc

The upwash in the case a = 1 is then given by

39 _ 3y w21 /2 -1/2
. ) . -1/2 .o ) .
At othe Wwing (£ < 0), Re(g ) = 0. The coefficient a, is given by
e boundary condition for ¢y prescribed at the plate. So far the
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coefficient a /5 is unknown. Its determination requires the
solution (in terms of £ and n) of the boundary value problem for

the circulation-free flow.

The flow due to a single vortex moving in the xy-system with
a velocity U is required to satisfy the boundary condition ¢y = 0
at the wing. Its behavior in the vicinity of the trailing edge i3
expected to be given by

1/2
¢ = by 5 Im(g )

(The coefficient corresponding to a, is zero.)

To obtain an expression which gives the moving vortex
singularity we rewrite Eq. (10)

¢ = Im[log(% + %l = U) + log 1) = Im{log(s + in ~ U) + laog 1]

{17

Except for the additive term log 1 “nis expression nas similarvity
form. The entire expression satisties kg, (13), because the

original expression satisfies k3. (4 | e real o oAand Imaginary

parts of the expression (17) substitute? ints kBq. (13) will give,
respectively, a real and an 1mapginary «xproeosion,  Hut Im log v = 0.
Tnerefore the imaginary part satisflies Egq. 14, oven 1t wne omits

Lhe Lerms tnat o contain Lime doero vt 1ves, LThobne gl part the -

. /1" logn .
depontent o part glves ‘I{~——;§— = 1. domay comse a3 A surprlooe that
qr°
Lhe cxpresaion for the moving vortex (kEg. (V7)) fits tre similarity

Yy pethesl o, Wwhiie that for the moving souarce fails to do 5o, This
“in, b course, he shown by direct substitution into kg, (145, tor

‘i purpone 1t 1o practical to introduce
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Details are omitted. Accordingly, the expression describing a
moving vortex is given by

¢ = Im log(g + in - U) (18)

This expression fails to satisfy the boundary conditions, zero
upwash at the wing, and zero perturbation at the circle around the
point £ = 0, n = 0 with radius "a." Therefore, a particular
solution is superimposed which corrects for this failure. It
depends on the parameter U/a = M., At the trailing edge it will
have a singularity

2.1/2 . 1/
b, L, Im(g + (1 - M) /2 in)T7/2

The value of b1/2(M) is the only information needed to determine
the potential in the wake. Without detailed computation the value
of this constant is not available.

We return to the coordinates (x,y,t). The expression with
zero upwash at the wing for a vortex generated at the trailing edge
at time E, has a logarithmic singularity at € = U, n = 0 given by

¢ = Im log(—>— + —¥— _ y)

t - t t -t

At the origin, this particular solution gives a term

2.1/2 . /2
x + (1 - M%) iy
b, ,,(M)Im ( - )

t -t
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Let the intensity of the vortex shed at time t be g(t).
dependent singularity at the trailing edge is then given by

t

. 2,172 _\1/2
by /2 | g()im (2 10 - M) YY) T
t -t
t —
= b(M)”ZIm(x + i(1 - M2)1/2 172 j —‘—s—f‘m dt
0 (t - t)

Now the postulate is imposed that this expression cancel the
singularity in the circulation-free flow which was given by

a1/2(M)Im(x + i1 - M2)1/2y)

This expression does not depend upon time. The integral

ctl

dt

O ——

g()
(¢t - ©)'72

ct)

must therefore be a constant, independent upon time. Let

-
]

cterd
[]
<

The integral then transforms into

1
I v—1/2[t1/2
0

g(t(1 - v)Jdv
In order for t1/23(t(1 - Vv)) to be independent of t,
g = const e 1/2¢1 - yyT1/2
or after substitution of v
g = const t =172
21
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one must have
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This gives the time history of the vortex shedding. Becausc of the
antisymmetry of the potential with respect to the x-axis, the
circulation-free flow and the potential added to the expression
(18) (to satisfy the boundary conditions) give zero potential for

X > 0 (for x < 0 at the wing there will, of course, be a potential
jump). The potential as one approaches the wake from above or
below is, therefore, solely given by the superposition of
expressions, Eq. (18).

¢(t,x,+0) = J

g(t)Im log (5—l—%1 - U)df
0 t -

t

A clearer picture for a fixed time t is obtained by introducing
Ut - t) = x

Then one obtains, with a different constant,

t
1

(Ut - x)

U
¢(t,x,+0) = const I 775 Im(log(x + iy) - x)dx
0

which shows the vortices which appear at the station X. The vortex
distribution extends from zero to Ut, the intensity is given by
const(Ut - x) 172, According to the discussion given in conjunc-
tion with the incompressible case (Eq. (5)), one then finds

¢(t,x,+0) = 2n const(Ut - x)”2

The coefficient of the x |’° singularity for ¢ at x < 0 and for oy
at x > 0 in the expression due to the shed vortices is independent
of time. The constant in all the expressions is chosen so that
they cancel the corresponding term in the circulation-free flow.

Notice the (Ut - x)—”2 singularity that arise at the

downstream end of the wake. It is caused by the fact that the wake

ends rather abruptly. The potential goes down to zero as




Wmmmwmwmiwv‘v“-"v"rvﬂv'v"v"- T W e TET e T e

D i A
PPN .

ISP R R

[ WP & LA

YRR NN )

v )

(ut - x)1/2. A sudden jump of the potential would correspond to a

single vortex, and then ¢y would behave as (Ut - x)-1. Under
present conditions the transition is somewhat smoother, and the
power for ¢y is -1/2 rather than -1.
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APPENDIX A
THE FLOW FIELD OF A POTENTIAL VORTEX IN THE VICINITY OF A PLATE
IN TWO-DIMENSIONAL INCOMPRESSIBLE FLOW

The flow field is obtain by a sequence of conformal
mappings. Figure A.1.

z, = x1i + iy1

We begin (as in the main text) with

zZ.~- a
¢(z1) = Im log ET;—E— a > 0, real
The transformation
1 + z1 2, = 1
27T -z, P Tz, e

maps the right half of the z1—plane into the outside of the unit
circle in the z2—plane. (The l1left half is mapped into its

inside.)

One obtains

z2 - b
¢_(z,) = Im log ~
z "2 z. - b 1
2
with
1 + a
b= 177/
The transformation
2 = (1/2)(z, +2.° )y, 2, =2+ /2% -1
2 2 ! 2

maps the outside of the unit circle in the z2-plane into the

whole z-plane with a slit extending from -1 +1., One obtains

25
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Sequence of conformal mappings from the right half of
an x,, ¥; plane with a logarithmic singularity to a
slit in the x,y plane extending from x = -1 to x = 1

again with a logarithmic singularity.
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(z + /22 + 1) - (£ + JE2 + 1)

(z + /22 + 1) - (£ - JE2 - 1)

For the constant b in the above formula we now introduce

b =~ § + ¢£2 -1

¢ ~ Im log (A.1)

then
b"-g-/e2-1

Eq. (A.1) must be applied if the extension of the wake is not small
in comparison to the span of the wing. It is the expression
underlying the work of Wagner.
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v APPENDIX B

M DETAILED EVALUATIONS FOR THE INCOMPRESSIBLE CASE

:ﬁ The constant occurring in Eq. (8) (for incompressible flow)
i& is found from the requirement that the expression ¢wake cancel the
~,

'~ corresponding singularity in the circulation-free flow around the
o profile. This requires the evaluation of the integral occurring in
Gﬁ this equation. Beyond this we are interested in the properties of
f: the flow field due to S ake’ in particular along the x-axis.

b There may be a question whether Eq. (6) (which is more

. general than Eq. (8)) gives zero pressure within the wake.

;3 Therefore, we evaluate ¢x and ¢t directly from this equation. The
;:5 result to be expected is found from Eq. (5)

B

o ¢, = -ng(t - (x/U0)) 0 ¢ x < Ut (B.1)
e

2: Then, because the wake perturbation pressure is zero, from Eq. (1)
g

% oy = nU(g(t - (x/U)) 0 < x < Ut (B.2)
R

~§j We restrict ourselves to an evaluation of o - To avoid in Eq. (6)
ﬁ; a differentiation of g with respect to t, we introduce, in essence,
}_ instead of £ the argument of g as a new variable.
o

»:

;:; Ut - £ = v

, (B.3)
\‘, ~d§ = dv

T The the limit £ = O gives v = Ut,

.

A the limit £ = Ut gives v = 0.

-

ﬁ: One obtains

. Ut

10 1/2 1/2

- ¥4 - (Ut - V)

' ¢ I g(v/U)Im log dv

nd wake 0 172, (Ut - v)1f?
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The differentiation of the upper limit with respect to t gives

1/2
Ug(t)Im logET7§
VA

The imaginary part of log 1 is not one-valued. Consider a point

z = x > Ut. This is a point outside of the incipient wake and
because the antisymmetry of the potential with respect to the x-
axis ¢ = 0. Therefore, log 1 must be taken equal to zero at these
points and, by continuation, everywhere else. We are, therefore,
left with differentiations under the integral sign. One obtains

Y t 1/2

_ , U -z

t

u
20 -1/2
Twake [ gviuyue - )72 1 Z

0

z - (0t - vy

X

For z x > 0, but different from Ut - v, the imaginary parts are
obviously zero. A contribution to ¢t’ therefore, comes only from
the immediate vicinity of the point v = Ut - x. There one obtains
as dominant terms

Ut - x + b

-dv
wake (Ut - x) I
2oL (X Im — -
ot ( U ) v - Ut - x - a v - (Ut - 2z)

3¢

Ut - x + b
= -g(t - %)U Im log(v - (Ut - z))

v = Ut - x - a

X z -
= -(g(t - U)U Im lng—_————

a > 0 small, b > 0 small, a and b real. Assume that z approaches
the point x from within the upper half plane.
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Then one has

lim log2 = X * b 1lim 1 b+ ie _ I
e+0 B2 =" x - a " e+0 -a + i€
Hence in accordance with Eq. (5)
o
Kk
——(t,x,+0) = Ung(t - )
¢
The procedure for ——%%59 is in essence the same.

For the remaining evaluations the specific form of g (Eq.
(8)) is substituted. Introducing v as above (Eq. (B.3)) one

obtains
Ut
1/2 1/2
-1/2 z - (Ut - v)
PuakeltsX+¥) = const | v Im log8=77 772 9V
0 z + (Ut - v)
Then
Ut
¢ 1/2
wake -1/2 N-1/2 z
— - const U Im g v (Ut - v) v - (Ut = 2) dv
o Ut
——%%59 = const Im J v-1/2(Ut - v)]/2 W 1 dv
0 z (v - (Ut - z))
Ut
9 ¢ -
- gake = const Re J v 1/‘;')(U’t, - v)1/2 W ! dv
y 0 z (v - (Ut - 2))

We make the lengths dimensionless with Ut

v = Utew

31
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Then
99 -
—uake | _ const u'/2¢7121m 1,
¢
wake -1/2
— e = const(Ut) Im I,
3¢
wake -1/2
_wake _ B.Y4
3y const(Ut) Re 12 ( )
with
1 -1/2 ~1/2 3172
- w20 2w — dw (B.5)
0 w- (1 -12)
1
I, [ w172 - w1 ] —— dw  (B.6)
0 z (w - (1 - 2))

We set w = q2. Then

1
I, = 221/21(1 - qz)—1/2[q2 - (1 - 2)]‘1dq
0
(B.7)
1
I, - 25"1/2f(1 q2)1/2[q2 - (1 - 217" 4q
0

1 is rewritten

2,-1/2

1
-1/2
[. = =2z j(l - q) dq
0

2—

1
231 72[ (1 - ¢®)

(1 - 7)1 'dq

(B.8)

[q

~=1/2
12 = -7Z + I1

11 can be evaluated in terms of elementary functions. The basic
formula, which, of course, can be verified by differentiation, is

“ound in Reference 2 (Eqs. 236, 3c, and 3d), x < a is real.
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- dx .

o s

N (x - a)/a - %°

(B.9a)

o -——:l————{log(—ax + a2) + /Qaz - a2)(a2 - x2) - log(x - a)}

o 2 2

J\:' a Q

\ g

o J dx )
179N

- (x - a)/a? - x°

2 (B.9b)
)

f

3 2

) 1 .. a - ax

————— arc sin r— i |a] > a >0, a real
/QE—- a® X @)

T
s e
L

(A

For real a the first version is practical for |a| < a; it can be

AR

used also for complex a. The expressions (B.7) and (B.8) can also

2 "\"".".'
Gy B h
LI R

be evaluated by the calculus of residues. The necessary trans-

Y}
-t

formations are shown in Appendix C, but in principle the calculus

s " -
Y of residue requires the same transformations as the systematic
> e
S derivation of Egs. (B.9). In the present case a = 1 and x = q.
5
, [ dq _
- (q - a)/1 - q2
- (B.10a)
o~ 2
o - — 1 f10g(1 - ag + /(1 - a®)(1 - q°)) - log(q - a)}
' 1 - a2
o d ) 2
- [ gy /- -
ot (B.10b)
e
~-. 1«__‘ arc sin }-q-%ch ;5 |al > 1, a real
5 VA
.o
ﬁi For z = x > 1 we set
N
e o v - 2
A zZ -1 =X 1 =D (B.11)
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.5,
el

L)

.r:‘:
oo Then from Eq. (B.7)
.r::.
'-": 1
-1/2 - -
I, = 2z J(1 2) 1/2(q2 + b%) 1dq
0
-1/2 !
.z j“ 2y-1/2¢ 1 1 g
) la g (q-ib q+1b)q
o
PP
v o
oN Here Eq. (B.10a) is applied. We set
o
XN
a = + 1ib
\:::.
:f. 1 - a2 = 1 + b2 - i
"
.
oy
' One obtains
I1 =
1 1
=172
: X 2.-1/2 .
:" " T (1 + b7) {log(1 - ibq + /1 + b2)(1 - q2) - log(q - ib)
‘:::
\‘s 1
J - log(1l + ibq + /(1 + b2)(1 - q2) + log(q + ib)'}
!‘“i
o 0 0
'
>
v
L After substitution of the limits, the terms left within the braces
" are log(-ib) - log(ib) = -im. Substituting b (Eq. (B.11)) one
obtains
I, = n(x - 1y"1/?2 x > 1 (B.12)
fg For 0 < z = x < 1 one must delay setting z = X because of the
’:f singularity which arises in the integrand at Qq = 1 - x. We write
:‘."P

2




]

Then

®

a
e R
L i) .

o s
—

4 X - - / -
: I, - ,n17/2 I“ 02) 172 (42 21144
LS 0
] 1
N -2 2= 2 0(g - @7 - (g ¢ @) T ag
- 0
S
'fi With Eq. (B.10a) one obtains ‘
<= L = |
1 1 ‘
{Q 2172471 - a2)1/2{1og(1 - aq + /,(1 - a2)(1 - q) I - log(q - a) i
;’:i =0 0 |
‘§§ 1 1 -
Jor: / 2 . |
Py - log(1+ ag + (1 - a1 - q) + log(q + a) } ;
N 0 q=0 |
x'_’:
‘1;' The singularity of the integrand expresses itself by the term
- 1
:g: log(q - a)|. We let z approach the point x in the upper half plan.
2 0
ﬂf z = x + ieg € > 0 small
J
o
o= alz) = /1 -2 =/1-xi .
2: 2 Y1 - x
2N
?;; is then a point of the lower half plane, the variable of integration
:ii q is real and ranges from zero to one. See Figure B.1. A cut from
%j g = a togq = -i_ needed to make log(q -~ a) one valued, does not
L intersect the path of integration. 1In the limit e€+0 the modulus of
[z.- q - a is O for g =1 and +7 for q = 0. Figure B.1 therefore
L lim

.-f‘_. £+0 108<q - a)

I B I el S A R N N oS R

»
K
4 .l»_. «

- log(1 - al(x)) - loga(x)) = -in
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Figure B.1.

9 IMAGINARY

/PATH OF INTEGRATION

————

9REAL

O-a 4 9-a

BRANCH CUT

Determination of the argument of (q - o) and (0 -a)
in the complex g plane. A cut from the point a to
negative imaginary infinity does not intersect the
path of the integration from q = 0 to q = 1. As one
moves in an %X, y plane,(y> 0)to y = 0, o« moves in

the lower half plane toward the real g axis.
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In the remaining terms one can replace immediately a by a(;) =

/1 - x. One obtains

I, = -in(1 - x)"1/2

For z = x < 0 one can immediately replace z by -|x|. Then

2-1/2 —i|x|'1/2
Z1/2 . iIxI1/2
We set
1-£=1+|x|=a2
Then

.
N VZ
1, - x| © ({(1 - q2)'1/2((q -a) 7 - (g s a™h

Here |a] > 1 and the second version of Eq. (B.10) is applied

1 1
13172
p - Llxl - (a? - 1) 1/2{ar‘c sin ~224} _ ape sin L-t24 }
a a - q a + q
0

Substituting the limits one obtains the same expression as for
0 < x <1

I, = -izr(1 - x)"V/2 X < 1

We repeat Eq. (B.12)

1 =n(§-1)'”2 X > 1
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L

Returning to Eqs. (B.4), using Eq. (B.8), and substituting x = Ut

LY

\

) one finds
\

o ¢, = +const Um(Ut - x)~1/2 x < Ut

"c
©
]
o
x
v

Ut

l‘ )‘."

&
L4
©
"

-const (Ut - x) 172 0 < x < Ut

<
»

1/2 -1/2

¢. = const w((x) - (Ut - x) ) x <0

. ¢ = w const(-x.”2 + (Ut - x)-1/2) x > Ut

1/2

¢ = - const(x ) 0 < x < Ut
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APPENDIX C

TRANSFORMATIONS OF THE EXPRESSION I1, EQ. (B.7)

1
. 2 j s1/2 dq
0

(1 - a2 - (1 - 3))

Since the integrand is an even function of g, we can write

+1
~1/2 J dq
I, = 2
! -1 (1 - qz)”z(q2 - (1 - 2)
The transformation
2 1 +gq
p T - q
p° - 1
qQ =
p- + 1

generates a rational integrand and maps the points q = -1 and
q = +1 into p = 0 and p = », respectively. One obtains

2
1, - 51/ (p° + 1)2dp

0 [(z - 1(p° + 1)2 + (p° - 1)2]
Since the integrand is an even function of P, one can write

+®

2
~1/2 (p + 1)dp
1. 312
-e [tz - 1%+ D%+ (p - 1]

1

In this form the integral is suitable for the evaluation by the
calculus of residues. The denominator can be rewritten
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2.2 (1 -2 + 12

- pz[_ G+ N1 - 2)2][p2 S - - 2)2]
z z

(p

From this expression the location of the poles is readily found.
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